THE KINETICS OF SOFTENING OF MATERIALS IN
NONSTATIONARY REGIME OF HEATING

O. F. Shlenskii and M. A, Sheryshev UDC 539.32

Equations for determining the working life of a plate subjected to a longitudinal force in the
presence of symmetric heating are derived taking into account the change of the modulus of
elasticity and the ultimate strength of the material with temperature.

The reason of a gradual softening of products on heating is the nonstationary process of change of the
mechanical properties of the material, which occurs as the heat front moves deeper into the product. An
additional lowering of the strength produces thermal stresses which appear in the presence of large tem-
perature gradients. In view of this it is of practical interest to estimate the decrease of the working life of
products, subjected to heating, using traditional criteria applied in heat-strength computations, for ex-
ample, the decrease of the safety factor or the carrying capacity.

We shall derive the desired equations in the simplest case of loading, i.e., for a uniaxial stretching
(compression) of a very thin plate-sample (H <« 2R) and of a plate, whose width is comparable to the thick-
ness; the heat flux is one-dimensional and directed perpendicular to the applied force. Initially we assume
that the material obeys Hooke's law and its ultimate strength is constant, being independent of the time of
loading. ’

For a symmetric thermal action on the thin plate the stresses in the transverse direction can be
neglected; then the stresses at any point in the plate are given by [1]

0, — El(5,— EaAT)/E — aAT]. (1)
In this expression the bar on the top denotes integral mean values of the corresponding parameters

over the thickness of the plate.

The softening of samples on heating is characterized by the relative strength ni = (o) p/ op(Ty), where
op(Ty) is the ultimate strength at T = T;. From Eq. (1) for o = const we have

te=E|E — a(EAT — EAT) /6y = nip+ni. @)

The first term in this formula shows the factor by which the relative strength is lowered due to the
decrease in the modulus of elasticity of the material at increased temperature; the second characterizes
the decrease in the working capacity only due to the appearance of thermal stresses if o = 0, ng, = 0.

For making the dependence nt(t) specific it is necessary to approximate the experimental graph E(T)
of the given material by an analytic function. In this respect the most convenient are the functions:

a) the linear function

E(T)=E,[1 —0(T —Ty); (3)
b) the step function
E(T)=E, for T<T*andE=0 for T> T*: (4)
c) the hyperbolic function
E(T) = E, /(1 + (T —Tyl; ()
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Fig. 1. Different methods of approximation of the ex-
perimental dependence E (T): 1) by Eq. (3); 2) by Eq.
6) (2 for »= 0.001, 2' for » = 0.002, 2" for » = 0.01);
3) by Eq. (6), T = 20°C, £ = 0.1; 4) experimental data.

d) the parabolic function
E(T) = Ey[1 —w(T — T, ©)

The graphs of these functions, referred to E), are shown in Fig. 1 together with the characteristic
dependence E(T). We shall make use of functions (3)-(6) in the determination of the terms n¢g and nt, of
formula (2) in the case of a linear law of variation of the surface temperature of the plate:

T(R, 1) =To+bt=T,(1+PdFo). @

For the linear approximation of the dependence E(T) we have

(8)
nee=Eo[l — (T — To)J/E.

Tt follows from here that in order to compute nif it is sufficient to know the variation of the average tem-
perature of the plate with time. The average temperature of the platefor the adopted law of heating is given
by the relation [2]

T—T i I |~ B, ©)
T —Pd [Fo-.T + E i exp (— ngo)] )
n=| -
For small values of Fo number from the last equation we obtain
vt, V' (Fo) V (Fo), (10)
mp=1—¢(" 72 =1—7T, Pd(F v P
tE C 3Vﬂ CIE] ( 0)p 3w
and correspondingly for large Fo numbers (quasistationary regime of heating)
_ Eo0, (T) R® E 1
e = B 1—-z;b< tp__sz” - 7}{1 — T, Pd {(FO)D— T“no (11)

The working life of the plate for a given relative strength ntF, is easily determined from the last
equation.

A more accurate description of the temperature dependence E(T) than the linear function is given by
the parabolic function (6); using this function we get ntg = E/E =w»(T — TO)Z. Calculating the value of (T
—T,)? we obtain

E , 2 2
e = 2o [1 — %T2Pd" (Fop — (—S—Fo + W)] . (12)

The computation of nig with the use of functions (3) and (6) is possible only under the conditions T
=T, =1/& + T, for the linear and T = T =vV1/% + T for the parabolic approximation of the dependence
E(T). If these conditions are not satisfied, substitution of the variable T in formulas (3), (6) gives negative
values of the modulus of elasticity.
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Fig. 2. Redistribution of stresses over the plate thickness, cor-
responding to the linear approximation (@) and step-function ap-
proximation (b) of the dependence E (T).

For many compound materials the step-function approximation (4) is valid for high-temperature heat-
ing. The limiting temperature T* approximately corresponds to the temperature of the most intensive soft-
ening of the thermoplastic components binding the composition materials, The step-function approximation
of the dependence E(T) is equivalent to the assertion that the displacement of the isothermal surfaces with
temperature T* leads to the exclusion of the layer, heated to higher temperatures and lying beyond this
surface (see Fig. 2), from operation. The relative deformations of such layers of the material are infinitely
large: ex = (0/E)g— — ~; therefore the temperature dependence o (T) of the material of these layers has
no effect on the final result of computation of ny. This step-by-step softening of the layers of the plate can
be represented as a decrease of its thickness with the rate of displacement of the temperature front T*.

Hence the softening of the plate begins at the instant when the stresses in its heated part, where T < T*,
reach the ultimate strength

0, 2.2% = (}x)p. 2-R=PH. (13)

Whence we obtain
_ 14
e =2%/R. =

Closed exact solutions inthese methods of approximation can be obtained only for a very small number

of heating regimes of the plate. Thus, for example, for a parabolic temperature distribution putting T = T*
in the formula

_ b gz 15
T =T+ bt— (R =2, (18)

and expanding it with respect to z*, we find that

s T*—T at
g == E/ 2 _hbé_o_ a—2 7]2.5

The approximation of E(T) with the use of function (5) leads to the following result:

1

+ 1 =V2K, —9F0 +1 (16)

+2

| E, E K
- dz= —— =% aretg -3 . (17)
2RE ) T+E(T—T,) (LK VRO =K

e =

For heating regimes of the plate other than the linear variation of the surface temperature with time
approximate methods based on the elimination of the spatial coordinate are very effective. The use of these
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methods is of practical interest, since the working
life of the plate and the average stress (FX) can be
interrelated through a simple relationship. Thus, for
a variation of the surface temperature of the plate

by a jump from T, to T the displacement of a fixed
temperature front 4* = (T* —T()/ (T¢ — Ty) in the
plate is described by the relation

R—z=R—K,y 12(Fo), . (18)
Hence

0 %6 F n,e=1—K, V'12(Fo), . (19)
Fig. 3. Kinetics of softening of AG-4S glass-~ We now turn to the determination of the second
fiber-reinforced plastic specimens under term in formula (2) for the parabolic law of tempera-
short-term heating with different compression ture distribution in the plate and linear approximation
loads: 1) according to (19), without taking into of the dependence E(T). In this case we have EAT
account the dependence of oy, on T; 2) accord- = Ey[(T — Tp) — &(T — Tp)4.

ing to (19), taking into account the tempera-
ture dependence of oy,; 3) according to (10), T*
=170°C; 4) according to (11); 5) experimental

Substituting the value of the temperature and
averaging, after some manipulations we obtain

data, determined from specimens a) 8, b) 5, ___oET,Pd | 1
and ¢) 3 mm thick. e = 60, l1 —t [(FO)D i ?] PdTO} 20)
in the computation at the middle layer (z = 0) and
g, = + ek, T,Pd_ {1 — C[(Fo)p _ E} pdTO} (21)
60, 5 |

in the computation at the surface layer (z =R). Of the two last values of ny, the value giving the smallest
coefficient ng, should be taken, i.e., depending on whether the unsafe point lies at the middle or the surface
layer of the plate. For a step-function approximation of E(T) we have

— * 2
EAT:EOZ (bt—yi—]—iz*z), (22)
R 2a  6a
ntinm( - aE,T,Pd ntE) (23)
60,
for z = 0 and
[ aE, T, Pd 1
=n, |1 ——22 — |~ pn,—1 24
nt te[ 26[; ( 3 te )] ( )

for z =R.

As an example we use the obtained relations to describe the experimental data of [2] on the kinetics of
softening of glassfiber-reinforced plastics under the action of heat fluxes of large intensity. In this work the
results of tests of samples, whose surface temperature was varied in accordance with the linear law with the
use of a programmed device, are presented. The experimental values of n; for samples of different thick-
ness (Pd = 1)arepresented in Fig. 3 and the curves of n¢(t), constructed from formulas (10) and (11), are
plotted. A comparison of the experimental and computational results shows that the linear approximation
of the dependence E(T) gives the best agreement: the maximum deviation from the mean value of n; at Fo
= 0.35 does not exceed 20%. Two types of disintegration of the samples were observed in the tests: laminar
disintegrationwhich started at ny < 0.5, and brittle disintegration which startedat ny > 0.5. Inthis connectionlet
us turn back to formula (24), from whichit follows thatat small values of nt the second term, which determines the
level of the thermal stresses, is comparable with the term ng ; in order of magnitude. Inthe experiment the tested
samples were subjected to compression; therefore for small n; the thermal stresses combine additively with the
stresses oy fromthe externalforce and produce a peak of the stresses inthe surface zone of heating. As the photo-

graphs showed, this led toa local loss of stability of the surfacelayers. Accordingto formula (21) the param-
eter ny, increases in proportion to the rate of heating and is independent of cx. Hence the increase of nt
is caused by the increase of the first term ny. This means that with the change in n¢ the maximum of the
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stress diagram shifts toward the middle surface and the sample disintegrates in all the layers following

the disintegration of the middle carrying layer. Thus the softening of the samples occurs in two stages
which remain undetected in the analysis by the methods of the theory of similarity. The first of these is
responsible for the appearance and development of thermal stresses, the second for their equalization.

The disintegration of the samples starts (depending on the mechanical and thermophysical properties

of the material) either at the instant of the action of maximum thermal stresses at the end of the first stage,
or as a result of vanishing of the carrying capacity of the plate at the end of the second stage.

The initial assumption that o, and E are constant quantities is not always valid for real materials,
especially at increased temperatures. Computation of long-term strength o (T, t) and durability are car-
ried out based on the principle of superposition of damage-~liabilities of the material using Baily's criterion
[3]. Another possible method of computing the change of temperature and stresses in the calculation of long-
term strength is based on the representations of the activation theory of strength [4, 5]. According to this
theory the disintegration of bodies is explained by the rupture of chemical bonds, occurring with the rate

k= kyexp(— U/RT). (25)

In the case of a linear dependence of the activation energy on the stress, U = U;—vyo, tpis deter-
mined by Eq. (27). Assuming that the ultimate strength of the material is proportional to the number of
bonds N and their disintegration obeys the first order reaction equation dN/dt = —kN, by integrating we ob-

tain the following relation between the disintegrating stress and the duration of its action
I3
P

g Ow)exp }’ kdt. (26)
i)

Oy = O + (Gin

In practice it is sometimes important to obtain an approximate estimate of the smallest value of the
working life of the material in the unsafe layer of the heated plate. Then, if the stress in the unsafe layer
is amonotonic function of time, using the mean value theorem we obtain

11

P k, U, —vo, ) U, —vo
= — —1ex —_— 0 L [ T el .
i o s (S )
Taking into account the variation of the ultimate strength of the material with temperature and time
ny = 1,0 (T, 8)/o, (T). (28)

The effect of the temperature—time dependence of elastic and viscous-elastic properties of the ma-
terial on the stressed state of the sample in nonstationary regime of heating is discussed in [7].

The relations obtained here can be generalized to the case of heating of a plate of large width, if the
Poisson coefficient of the material is constant. Then, as shown in [1], in the plane stressed state

0, = %[sx—}—vsy——aT(l +v)] (29)

and, hence, :
1y =y, + My, /(1 — ), 30)
NOTATION

H is the width of the plate;
2R is the thickness of the plate;
(O‘X)p is the mean stress at which disintegration of the plate occurs;
Pd =bR/aT, is the Predvoditelev number;
b =dT/dt is the rate of heating;
pp = (2n—1)
-7/ 2 are the characteristic numbers;
A, B are the constant coefficients;
(Fo)p is the Fourier number corresponding to the instant of disintegration of the sample;
z* is the coordinate of the layer with temperature T*;
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K1 = (T/To - 1)/Pd)
Ky =1 —V(T* = Tg)/(T¢ = Tyhs

K; = £bR2/ 2;

v _ is the Poisson coefficient;

ky, Up, v are material constants;

Oinss Coo are the instantaneous and equilibrium values of disintegration stresses.
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